Post-shot Report: Dynamic materials experiments at Trident laser facility, April 25–May 13, 2005*

Sheng-Nian Luo[†], Damian C Swift and Thomas E Tierney

P-24 Plasma Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Abstract. We have conducted laser-driven shock wave experiments to investigate dynamic properties of condensed matter including plasticity, phase transitions, equations of state and optical properties, using line-imaging Doppler interferometry, transient x-ray diffraction and spectroscopy. The starting materials investigated include sputtered Cu-doped Be (Be_{0.991}Cu_{0.009}), single crystal Be ($\langle \bar{2}110 \rangle$), Be- and Zr-based metallic glasses, Ti, Zr, Si, NiAl, PTFE (Teflon[®]) and scintillator LSO. We have obtained quality data on the flow stress of Be under ablative laser loading, the key objective of the present laser experiment campaign at Trident.

1. Objectives

- **Primary** flow stress of Be: Given the potentially severe effects of the dynamic response Be-capsule on the implosion characteristics for the ICF, the orientation-dependence (anisotropy) of plasticity of single-crystal Be as well as its bulk behavior under ultrahigh strain-rate is one of the key material factors to be considered. The main technique is VISAR with complement by TXD.
- **Opportunistic:** Scoping and continuing investigations of dynamic responses of Be- and Zr-based metallic glasses, NiAl, Teflon[®] PTFE resin, LSO scintillators, Ti and Zr under laser-driven stress wave loading, and technical development of quadrature and areal VISARs.
- * ICF-related experiment report, LA-UR-05-5643.
- † E-Mail: sluo@lanl.gov. Updated, 1 May 2006.

2. Schedule

- Start of access and set-up: April 25–26.
- First shot: April 27.
- Last shot: May 13.

3. Materials

- Sputtered Be_{0.991}Cu_{0.009}: Two samples (A and B, about 1 mm×1 mm×50 μm) were supplied by LLNL with one side polished.
- Single Be crystals: 3–5 mm wide and 60–150 μ m thick, cut in $\langle \bar{2}110 \rangle$ direction and (one-side) polished by MST-6 and 7. Among 4 pieces supplied, Be#1, #2 and #4 were either wrinkled or with holes or cracks. The speed of the elastic precursor is estimated as about 13 km/s. Note: There is a confusion about the orientation which was recorded originally as $\langle \bar{2}\bar{1}10 \rangle$, however, it seems that it be $\langle \bar{2}110 \rangle$.
- NiAl: single- and bi-crystals from Koskelo's LDRD-DR. The speed of the elastic precursor is about 7.2 km/s (in [111]).
- Zr: foil from Goodfellow. The speed of the elastic precursor is about 4.6 km/s.
- Ti: foil from Goodfellow. The speed of the elastic precursor is about 6.1 km/s.
- Si: Goodfellow scoping shot material for Be-Cu shots.
- Teflon^(R) PTFE resin: a polymer consisting of recurring tetrafluoroethylene monomer units. Sample thickness is about 102 μ m with Al-coating on one side (fabricated by DX-2). We estimate the wave speed as 1.7–2.0 km/s.
- LSO scintillator: from McClellan at MST-8 (about 60 μ m thick).
- Metallic glass Vitreloy 1: Zr_{41.2}Ti_{13.8}Ni₁₀Be_{22.5} (various thicknesses, from Caltech).
- Metallic glass Vitreloy 106: ribbon, Zr₅₇Nb₅Al₁₀Cu_{15.4}Ni_{12.6} (24 μm, from Singapore and Caltech).

4. Experimental

The basic experimental aspects are essentially the same as previous dynamic materials campaigns at Trident. Some details omitted here can be found in our previous post-shot reports (e.g. LA-UR-04-2603, LA-UR-04-1508 and LA-UR-04-1475).

- Schematic layout: see Figs. 1 and 2.
- Laser drive conditions
 - Trident laser: Nd:YLF with a fundamental wavelength of 1054 nm.
 - A-beam: 2.4-ns duration, 527 nm, 100–200 J for transient x-ray diffraction.
 A-beam drives the x-ray backlighter (e.g. 6-μm Ti foil at the tip of the gold cone) from nearly due west.
 - B-beam: 2.4-ns duration, 527 nm, 1–250 J for shock wave loading. B-beam irradiates the sample from the northeast port (nominally, 35° from east and 6° from sample normal, as defined by the axis set up for the VISAR: 41° south of west). In practice, we set the VISAR probe laser beam and drive

Figure 1. Schematic experimental setup for VISAR and TXD measurements at Trident.

Figure 2. A representative experiment setup inside the south target chamber at Trident.

Spot dia. (mm)	Phase plate	Defocus (in)	Comments
5.0	Fresnel zone	0.600	4-mm design spot defocused to remove central hotspot
1.5	2-mm hexagonal	0.339	0.6-mm design spot defocused for better power control and easier alignment

Table 1. Driving laser spot on the sample.

laser beam collinear, and we made use of the drive beam entering the VISAR recording camera for timing of the time fiducial against the drive beam.

 Laser spot: 5 mm in diameter (Table 1). Diffractive optical elements were used where possible to smooth large-scale spatial variations in beam intensity. Generally these phase plates were not ideal for the desired uniformity or spot size, so the drive beam was defocused slightly.

	Strea	k sweep ti	me (ns)
	50	20	10
t = 0 ns	2978	3017.5	3027.5
\downarrow	2968	3012.5	3025.5
	2958	3007.5	3023.5
	2948	3002.5	3021.5
	2938	2997.5	3019.5
	-	-	3017.5

Table 2. Timing of Hamamatsu streak camera for recording VISAR signals using DG525 relative to B-beam. t denotes the instant on streak record.

• VISAR

- Line-imaging VISAR: Forsman type. Two VPF's (velocity per fringe) of 4.95 and 0.8 km/s are available using two SF6 etalons of different lengths for the 660-nm probe laser. Probe laser was timed using DG535 at 546,330 ns for VISAR streak camera at 2988 ns for the 50-ns sweep.
- Timing of Hamamatsu streak camera: Table 2.
- Spatial calibration of Hamamatsu streak camera: using calibration grids by DRC Metrigraphics' 201-μm grid (file spat0427.ipl).
- Temporal calibration of Hamamatsu streak camera: using fiducial pulses at 1.71-ns separation with mirror spacing of 10.09". (It was 1.69-ns for last campaign.)
- TXD
 - Setup: (Fig. 1) The normal of the Ti-backlighter-foil at 45° to the sample normal (i.e. 4° north of west), and 8-mm away from target center. X-ray wavelength is 2.61 Å.
 - Timing of A-beam relative to B-beam: 0 ± 50 ps.
 - Timing of TXD Kentech cameras: using elements 1, 7, 10, 13 of the pulse stacker, at 3007 ns for South and 2998 ns for North Kentech camera.
- **Spectroscopy:** Intended for preliminary measurements of light emission of shocked LSO scintillator, and recorded with a PDC photodiode split from the VISAR return beam. The incoming light was filtered by a green and a red filter (possibly the real emission was filtered, too).

5. Shot log and statistics

See Tables 3–7 for shot log. The shot statistical results are:

- total: 49
- Be-Cu, VISAR: 2
- Be single crystal, VISAR: 2
- Be single crystal, VISAR + TXD: 2
- Be, static TXD: 6
- NiAl single crystals, VISAR: 5
- NiAl bi-crystals, VISAR + recovery: 1
- Ti, VISAR (also intended for diagnostics testing): 14
- Zr, VISAR (also intended for diagnostics testing): 1

- Si, VISAR (intended for diagnostics testing): 2
- LSO scintillator, VISAR: 2
- Vitreloy 1, VISAR: 1
- Vitreloy 106, VISAR: 1
- **PTFE**, **VISAR**: 10.

The average shot rate is 4.5 shots/day (49 shots for 11 shooting days). We also encountered Trident laser problem, and distractions from other commitments.

6. Preliminary evaluation

• VISAR timing offset and scales: To relate VISAR camera timing to the drive pulse, the target was omitted and a low-energy pulse was fed through the VISAR collection optics to the streak camera. The last element of the drive pulse was used, giving a roughly Gaussian pulse 180 ps wide. The streak record showed the pulse, giving a direct measurement of the arrival of the drive pulse at the target for a given camera delay. If the delaying leg of the VISAR was not blocked, a second, delayed pulse was also recorded. In most cases here, the filtering was too low and the record was saturated during the pulse. The time center of the pulse was estimated as the center of the saturated region. As this was the last of 13 elements, the start of a standard 13-element drive pulse was 2.4 ns earlier.

Several records were taken for each sweep setting on the streak camera, varying the camera delay using a Stanford Instruments DG535 delay generator. Polynomial fitting (linear or quadratic) was used to determine the relation between delay time t_d and pixel p (Table 3 and Figs 3 to 5) – note that the correction to a time for element 1 has *not* been applied to the graphs, but it was applied to the reference time in the table. Fitting was performed using the 'Gnuplot' program, version 3.8j. The quadratic term was small but finite; this reflects nonlinearity in the sweep. Thus, assuming the DG535 was accurate and linear, the time corresponding to a given pixel can be obtained for an arbitrary delay setting t'_d , with respect to the start of the drive pulse:

$$t(p) = t'_d - t_d(p). \tag{1}$$

Based on the delay data, the linear fit is adequate for the '50 ns' sweep, and the quadratic fits should be used for the '20 ns' and '10 ns' settings.

- Be flow stress measurement: decent VISAR recordings obtained for Be single crystal ($\langle \bar{2}110 \rangle$) and sputtered Be_{0.991}Cu_{0.009}. Weak but recognizable TXD lines were also recorded. These data and previous shots on single- and poly-crystal Be could allow us to calibrate empirical plasticity models.
- **Teflon**[®] **PTFE resin**: two-wave structure was observed in some shots, indicating the potential of laser shock wave experiments for improved investigation of its mechanical properties and phase transitions under higher strain-rate loading. Both sides need to be coated as the uncoated side still transmits the driving laser that would complicate VISAR recordings.
- **NiAl**: Single crystals and a bi-crystal were shot for plasticity properties. Successful recovery of the bi-crystal for detailed metallurgical examinations at ASU.

Table 3. Functional fits to sweep/timing data for VISAR streak camera. Functional fits: $t_d = t_0 + \alpha p$ and $t_d = t_0 + \alpha p + \beta p^2$, where t_d is the delay time and p the pixel position of the reference pulse. The correction from the measurement of element 13 to the reference time for element 1 has been applied to t_0 .

-			
nominal sweep	t_0	α	β
(ns)	(ns)	(ps/pixel)	$(ps/pixel)^2$
50	2975.6 ± 0.3	-48.42 ± 0.67	
	2975.4 ± 0.4	-46.56 ± 2.61	-2.28 ± 3.07
20	3015.4 ± 0.3	-20.86 ± 0.50	
	3015.1 ± 0.1	-18.0 ± 0.6	-3.0 ± 0.6
10	3025.42 ± 0.14	-10.88 ± 0.24	
	3025.20 ± 0.08	-9.25 ± 0.39	-1.73 ± 0.40

Figure 3. Delay time as a function of pixel position for nominal 50 ns sweep, with linear and quadratic fits.

- Zr and Ti: Decent VISAR recordings obtained at two different VPF's complement our database on these hexagonal metals, and may illuminate our understanding of hex materials in general and Be in particular.
- Be-(Zr)-based metallic glass: Although the probe laser multi-moded, the clear shock breakout indicates that laser experiments may be appropriate for investigating dynamic properties of metallic glasses at high strain rates.
- LSO scintillator: No useful data was recorded a spectrometer and more sophisticated separation of the drive and VISAR probe lasers are necessary.

7. Acknowledgments

- Sponsorship by the Inertial Confinement Fusion program at LANL (C10: HEDP) through N M Hoffman and A A Hauer.
- Trident laser facility and staff, R Johnson, T Hurry, N Okamoto, T Ortiz, R

Figure 4. Delay time as a function of pixel position for nominal $20 \,\mathrm{ns}$ sweep, with linear and quadratic fits.

Figure 5. Delay time as a function of pixel position for nominal 10 ns sweep, with linear and quadratic fits.

Gonzales, T Shimada, F Archuleta, D Pacheco and S. Reid, for target area and laser support.

- J. Cowan for photographic support.
- MST-6 and 7 for Be single crystal fabrication and characterization.
- LLNL for sputtered Be with Cu doping.

Table 4: Shot log. VISAR \equiv V; TXD \equiv T; V-laser \equiv VISAR probe laser. The drive laser spot is 5 mm (diameter) only. VPF of 4950 m/s was adopted for shots #17496–17561, and changed to 800 m/s on May 13, 2005 for #17565–17571.

Shot	Sample	A B	Sweep	Camera	V-laser	Diag.
	VP	F of 4950 $\mathrm{m}/$'s for shot	15 17496 - 17	561.	
		April 27	, 2005, W	ednesday		
17496	Zr	— 27	50	2,968(-10)	$546,\!310$	V
	Comm.	laser multim	ode, sampl	e thickness unl	known ~ 25	$\mu \mathrm{m}.$
17497	Ti, 29	- 26	50	2,968(-10)	$546,\!310$	V
	Comm.	probe laser (OK, 1/4 VI	PF		
		April 28	8, 2005, T	hursday		
17499	Ti, 27	- 28	20	3012.5(-5)	$546,\!300$	V
	Comm.	weak, $1/4F$;	file saving	problem, resta	rt computer	•
				<i>.</i>		
17500	Ti, 28	— 31	20	3012.5(-5)	$546,\!300$	V
	Comm.	uniform brea	akout, 1/4F			
17501	Ti, 28	-62	20	3012.5(-5)	$546,\!300$	V
	Comm.	one VISAR-	beam block	ed, no fringes		
	T1 0 0					
17502	Ti, 28	— 74	20	3012.5(-5)	$546,\!300$	V
	Comm.	repeat $\#175$	01, two-wa	ve structure		
1 = = 0.0	T : 00	100	20	2010 F(F)	540.000	T 7
17503	11, 28	— 126	20	3012.5(-5)	546,300	V
	Comm.	two-wave str	ucture			
17504	S: 20	40	20	20125(5)	546 200	V
17304	C_{comm}	- 49	20 b foil pund	3012.3(-3)	540,500	v
	Comm.	1×1 11111 , 1	e ion punci			
17505	Bo Cu	45	20	2012.5(.5)	546 300	V
17505	De-Cu A 50	- 40	20	3012.3(-3)	540,500	v
	Comm	sputtered o	67_{-} μ m Zr	base with a 0	7mm hole	
	Comm.	sample one s	$\frac{1}{2} 07^{-} \mu \ln 21$	d from GA or	LLNL	
		sample on di	rive-laser si	de	LLINE.	
		clear breako	ut of elastic	r precursor		
		but reflectiv	ity disappe	ared later		
		Sur reneetiv	ity anappe			
		April	29, 2005.	Friday		
17507	Ti. 27	- 63	20	3012,5(-5)	546.300	V
	Comm	$1 \times 1.5 \text{ mm}^2$	 Ti on 1-mn	a LiF. intended	for scoping	ŗ.
	00.10110	shot for sput	tered Be-C	u with a wind	OW.	5
		breakout occ	curred 5 ns	earlier.		
17508	Si, 20	— 55	20	3012.5(-5)	546,300	V
	,			cor	tinued on n	ext page

Post-shot Report, LA-UR-05-5643

continued	from	previous	page
			_

Shot	Sample	A B	Sweep	Camera	V-laser	Diag.
	Comm.	$1 \times 1.5 \text{ mm}^2$ S	Si on Ti w	ith a hole of 0.	6 mm.	
		Si near VISA	AR side.			
		shock breako	out near 20	0 ns, no time fie	lucial.	
17509	Be-Cu B , 50	— 31	20	3012.5(-5)	546,300	V
	Comm.	sputtered, or	n a 67-µm	Zr base with a	0.7mm hole	э.
		sample on dr	rive-laser s	side.		
		sample B one	e side poli	shed, from GA	or LLNL.	
		breakout nea	r the end	of record, misa	lignment?	
17510	Be #1 125	— 74	20	3022.5(5)	546,310	V
	$\frac{1}{Comm}$	single crystal	$ \langle \bar{2}110\rangle$.			
	0011111	transit time	12 ns, sho	ck breakout 7 r	ns.	
		slow rise in p	precursor;	plastic wave se	en.	
15541	Ш. 00	150	20	2010 5/ 5	F 40 000	17
17511	$T_1, 28$	— 153 T: fail true r	20	3012.5(-5)	546,300	V
	Comm.	11 IOII. two-v	wave struc	aure.		
		May 03	3, 2005, 7	Tuesday		
17513	Ti, 28	— ~ 0	20	3012.5(-5)	$546,\!300$	V
	Comm.	frequency-do	ubling las	er crystals not	aligned,	
		very low ener	rgy in B-b	eam.		
17514	Ti 28	<i>─</i> ~190	20	$3012\ 5(-5)$	546 300	V
11014	Comm.	decent shock	breakout	possibly near	over-drive	v
				, F		
17515	\mathbf{Be}	— 90	20	3022.5(5)	$546,\!310$	V
	#2, 112		_			
	Comm.	single crystal	$l\langle 2110\rangle, c$	racked, rough s	urfaces.	
		transit time	12 ns, sho	ck breakout @	7 ns.	
		slow ramping	g; possible	piasma interfe	ring	
		through the	CLACKS.			
17590	T; 99	May 04, 111	2005, W	ednesday	546 200	V
17529	11, 28	— 111 nilot shot for	20 Be novt -	3012.3(-3) shot	540,500	v
	Comm.	the record is	weak but	nice if normal	ized	
		the record is	weak, but	, moo n normai	12004	
17530	Be, 112 #3	— 122	20	3022.5(5)	546,310	V
	Comm.	single crystal	$ \langle \bar{2}110 \rangle, s $	hining surface.		
		(transit time	12 ns, sh	ock breakout @	7 ns).	
		there is one s	small DO	Γ on one side of	f the sample	
				cor	tinued on n	ext page

continued from previous page

Shot	Sample	A B Sweep Camera V-laser Diag.
		for relative orientation upon cutting -facing VISAR for the sake of TXD. nice and clean record, possibly over-drive.
	Comm.	May 05, 2005, Thursday TXD, Kentech cameras static timing to A and B. B-to-A was done (0).
17532	Au <i>Comm.</i>	7 9 — $3022.5(5)$ 546,310 T Au foil for timing Kentech cameras, elements 1, 7, 10, 13. South sees A, delay 3009.6 ns, 17 mils Be, CsI. North sees B, delay 3009.3 ns, 17 mils Be, CsI.
17539	Ti <i>Comm.</i>	172 — 3022.5(5) 546,310 T x-rays from Ti-foil on time-integrated tubby no real target; tubby looks good South sees A, delay 3009.6 ns, 17 mils Be, CsI. North sees B, delay 3009.3 ns, 17 mils Be, CsI.
17541	PTFE,102 Comm.	May 06, 2005, Friday 103 21 50 3012.5(34.5) 546,360 V, T aluminized Teflon. Ti backlighter, tubby only. 49.8 to 60.7 ns transit? no shock observed; weak or camera timing too late
17542	PTFE,102 Comm.	 179 96 50 2967.5(-10.5) 546,320 V, T aluminized Teflon. Ti backlighter, tubby only. 49.8 to 60.7 ns transit might be wrong. probe laser multimoding.
17543	NiAl, 58 Comm.	$\begin{array}{cccc} - & 108 & 20 & 3012.5(-5) & 546,530 & {\rm V} \\ {\rm NiAl-[111]-04-1} \\ {\rm late \ breakout.} \end{array}$
17544	NiAl, 180 Comm.	May 06, 2005, Friday — 98 20 3037.5(20) 546,350 V NiAl-[110] confusing record.
17545	PTFE,102 Comm.	146 88 50 3012.5(34.5) 546,360 V, T aluminized Teflon. Al driver.Ti backlighter, tubby only 49.8 to 60.7 ns transit? timing is right.
17546	PTFE,102 Comm.	— 167 50 3012.5(34.5) 546,360 V aluminized Teflon. Al driver.Ti backlighter, tubby only continued on next page

continued from previous page

Shot	Sample	A B Sweep	Camera	V-laser	Diag.
		49.8 to 60.7 ns transit? no shock. timing?			
17547	PTFE,102 Comm.	 — 167 50 aluminized Teflon. Al d 49.8 to 60.7 ns transit? tilted shock breakout. 	3012.5(34.5) river.Ti backliş	546,360 ghter, tubb	V y only
17549	NiAl,120 Comm.	May 10, 2005, T $-$ 30 20 $\langle 111 \rangle$, 16.7 ns transit. weak shock, clear break no recovery.	uesday 3027.5(10) out.	546,320	V
17550	PTFE,102 Comm.	 — 139 50 aluminized Teflon. Al d 49.8 to 60.7 ns transit? tilted shock breakout, p 	3012.5(34.5) river. ossibly 2-wave	546,360 structure.	V
17551	PTFE,102 Comm.	 — 120 50 aluminized Teflon. Al d 49.8 to 60.7 ns transit? tilted shock breakout, p 	3012.5(34.5) river. ossibly 2-wave	546,360 structure.	V
17552	PTFE,102 Comm.	- 99 50 aluminized Teflon. Al d 49.8 to 60.7 ns transit? no shock breakout, poss	3012.5(34.5) river. ibly due to glu	546,360 ie.	V
17553	NiAl,160 Comm.	- 18 20 (111), with LiF window nice and clean record w	3032.5(15) , 22.3ns ith wiggles. Re	546,320 ecovered.	V
17554	Be#3 , 60 <i>Comm.</i>	168 — 20 single crystal $\langle \bar{2}110 \rangle$, cra static TXD, A-beam on S Kentech, delay 3007.0 N Kentech, delay 2998.0 small signal on PCD. time-integrated x-ray fil Kentechs noisy, more fil	3022.5 (5) acked, rough st ly, 45 degree, 8 0 ns, 17mils Be 0 ns, 17mils Be ms saturated, tering.	546,310 urfaces 3 mm. $+ 12\mu\text{m Fe}$ $+ 6\mu\text{m Ni}$	T e CsI. CsI.
17555	Vit1,158 Comm.	 65 20 30.5ns transit shock breakout @ 10 ns 	3037.5(20) , laser multimo	546,320 ode.	V

continued on next page

Post-shot Report, LA-UR-05-5643

. • 1	c	•	
continued	from	previous	page

	Sample	Α	В	Sweep	Camera	V-laser	Diag.
		M	av 11	, 2005. W	ednesdav		
17557	Be, 60 #3	168		20	3022.5(5)	546,310	Т
	Comm.	single static S Ken N Ken differe time-i Kente	crysta XRD, itech, c itech, c itech, ent, ne ntegra echs no	d $\langle \bar{2}110 \rangle$, c: A-beam of delay 3007. delay 2998. ed more tea ted x-ray fi isy, more fi	racked, rough s nly, 45 degree, 0 ns, 17mils Be 0 ns, 17mils Bo sts. ilms saturated, ltering.	urfaces. 8mm $e + 12\mu m$ Fe $e + 6\mu m$ Ni	e CsI. CsI.
17558	NiAl,140 Comm.	$\frac{-}{\langle 110\rangle},$ drive	22 with 1 at win	20 LiF windov dow side, r	3027.5(10) v, 20ns to shock, no rec	546,320 covery	V, R
17559	Be, 60 #3	152		20	3022.5(5)	546,310	Т
	Comm.	single static S Ken N Ken differe	crysta XRD, itech, o ntech, ent, ne	Al (2110), cr A-beam or delay 3007. delay 2998. ed more tes	racked, rough s nly, 45 degree, 0 ns, 17mils Be 0 ns, 17mils Be sts.	urfaces 8mm e + 12um Fe e + 6um Ni	e CsI CsI
17560	PTFE,102 Comm.	 alumii 49.8 t	99 nized 7 o 60.7	50 Teflon. Al o ns transit?	3012.5(34.5) driver.	546,360	V
		136	140	20	2022 E (E)	E46 210	
17561	Be, 60 #3	100	149	20	5022.5(5)	540,510	V, '1
17561	Be, 60 #3 Comm.	single TXD, S Ken N Ken <i>nice</i> V S x-ra time-i	crysta 45 deg itech, c itech, 7 /ISAR y film ntegra	20 Il $\langle \bar{2}110 \rangle$, cr gree, 8mm. delay 3007. delay 2998. <i>record.</i> some lines ted x-ray fi	s022.3 (3) racked, rough s 0 ns, 17mils Be 0 ns, 17mils Be , N x-ray film s ilms saturated,	546,510 urfaces. a + 12um Fe a + 6um Ni saturated. Kentechs n	V, 1 e CsI. CsI. .oisy.
17561	Be, 60 #3 Comm. Be, 149 #4	single TXD, S Ken N Ken <i>nice V</i> S x-ra time-i M 136	143 crysta 45 de atech, o tech, o VISAR y film ntegra Iay 12	20 d $\langle \bar{2}110 \rangle$, c: gree, 8mm. delay 3007. delay 2998. <i>record.</i> some lines ted x-ray fi 2, 2005, T 20	acked, rough s ons, 17mils Be ons, 17mils Be ons, 17mils Be , N x-ray film s ilms saturated, hursday 3022.5(5)	546,310 urfaces. e + 12um Fe e + 6um Ni saturated. Kentechs n 546,310	V, I e CsI. CsI. oisy.

continued on next page

continued from previous page

Shot	Sample	A	B	Sweep	Camera	V-laser	Diag.
	VP	F of 80	00 m/s	s for shot	$s \ 17565 - 175$	571.	
17565	Ti, 28 Comm.	— Ti foil	May 1 105	2005, 2005, 20	Friday $3012.5(-5)$	546,310	V
		nice sl	hock bi	eakout, tw	vo-wave structu	re.	
17566	Be, 149 #4	139	62	20	3022.5(5)	546,310	V,T
	Comm.	single transit S Ken <i>beautij</i>	crystal t time tech lin ful bred	$\langle \bar{2}110 \rangle$, sh 12 ns, shoones. Note, two-	nining surface, ck breakout @ 7 wave structure.	big wrinkle. 7 ns.	
17567	PTFE,102 Comm.	— alumin 49.8 to non-un	23 nized T o 60.7 i niform	50 Teflon. Al o ns transit? breakout	3012.5(34.5) lriver.	546,360	V
17568	NiAl,175 <i>Comm.</i>	$\langle 111 \rangle$ · bicrys recover	$65 - \langle 100 \rangle$ tal, wind	20 = -04 - 32	3037.5(20) with LiF. blicated	546,330	V
17569	Vit106,24 Comm.	— Vitrele no clea	34 oy 106 ar reco	20 (40 m/s) o rd.	3012.5(-5) on LiF, Caltech	546,330 , Singapore	V , Yi Li.
17570	LSO, 60 Comm.	— on 28- nice sl	58 µm Ti hock bi	20 , with photeakout; sn	3012.5(-5) todiode to scop nall LSO signal	546,310 bes.	V
17571	LSO, 60 Comm.	on 28- nice sl	75 µm Ti hock bi	20 , with LSC reakout; sn	3012.5(-5)) photodiode to nall LSO signal	546,310 o scopes.	V